Extensions 1→N→G→Q→1 with N=C3:S3 and Q=C22xS3

Direct product G=NxQ with N=C3:S3 and Q=C22xS3
dρLabelID
C22xS3xC3:S372C2^2xS3xC3:S3432,768

Semidirect products G=N:Q with N=C3:S3 and Q=C22xS3
extensionφ:Q→Out NdρLabelID
C3:S3:(C22xS3) = C22xC32:D6φ: C22xS3/C22S3 ⊆ Out C3:S336C3:S3:(C2^2xS3)432,545
C3:S3:2(C22xS3) = C2xS33φ: C22xS3/D6C2 ⊆ Out C3:S3248+C3:S3:2(C2^2xS3)432,759
C3:S3:3(C22xS3) = C22xC32:4D6φ: C22xS3/C2xC6C2 ⊆ Out C3:S348C3:S3:3(C2^2xS3)432,769

Non-split extensions G=N.Q with N=C3:S3 and Q=C22xS3
extensionφ:Q→Out NdρLabelID
C3:S3.1(C22xS3) = S3xS3wrC2φ: C22xS3/S3C22 ⊆ Out C3:S3128+C3:S3.1(C2^2xS3)432,741
C3:S3.2(C22xS3) = S3xPSU3(F2)φ: C22xS3/S3C22 ⊆ Out C3:S32416+C3:S3.2(C2^2xS3)432,742
C3:S3.3(C22xS3) = C2xC33:D4φ: C22xS3/C6C22 ⊆ Out C3:S3244C3:S3.3(C2^2xS3)432,755
C3:S3.4(C22xS3) = C2xC32:2D12φ: C22xS3/C6C22 ⊆ Out C3:S3248+C3:S3.4(C2^2xS3)432,756
C3:S3.5(C22xS3) = C2xC33:Q8φ: C22xS3/C6C22 ⊆ Out C3:S3488C3:S3.5(C2^2xS3)432,758
C3:S3.6(C22xS3) = C2xS3xC32:C4φ: C22xS3/D6C2 ⊆ Out C3:S3248+C3:S3.6(C2^2xS3)432,753
C3:S3.7(C22xS3) = C22xC33:C4φ: C22xS3/C2xC6C2 ⊆ Out C3:S348C3:S3.7(C2^2xS3)432,766

׿
x
:
Z
F
o
wr
Q
<